An inverse problem for computing a leading coefficient in the Sturm-Liouville operator by using the boundary data

نویسنده

  • Chein-Shan Liu
چکیده

Keywords: Inverse coefficient problem (ICP) Lie-group adaptive method (LGAM) Leading coefficient Inverse Sturm–Liouville operator Iterative method a b s t r a c t We consider an inverse problem for identifying a leading coefficient a(x) in À(a(x)y 0 (x)) 0 + q(x)y(x) = H(x), which is known as an inverse coefficient problem for the Sturm–Liouville operator. We transform y(x) to u(x, t) = (1 + t)y(x) and derive a parabolic type PDE in a fictitious time domain of t. Then we develop a Lie-group adaptive method (LGAM) to find the coefficient function a(x). When a(x) is a continuous function of x, we can identify it very well, by giving boundary data of y, y 0 and a. The efficiency of LGAM is confirmed by comparing the numerical results with exact solutions. Although the data used in the identification are limited, we can provide a rather accurate solution of a(x). To motivate the present study, we consider the longitudinal wave motion of a one-dimensional rod with a variable Young's modulus E(x): 1 A @ @x EðxÞA @uðx; tÞ @x ¼ q @ 2 uðx; tÞ @t 2 ; ð1Þ where A is a constant cross-sectional area of the rod, q is a constant mass-density, and u(x, t) is the axial displacement. Let u(x, t) = e ixt y(x); Eq. (1) can be simplified to À d dx EðxÞA dyðxÞ dx ¼ qAx 2 yðxÞ; ð2Þ where x is the vibrational frequency. In the inverse problem, it is technically important to identify the material property E(x) for a rod made of non-homogeneous material. This problem is known as an inverse problem for identifying the rigidity function E(x)A of the rod, which falls into a category of the parameter identification problems of differential operators. In this paper we consider a mathematical modeling of these problems by the following Inverse coefficient problem: Find the pair of unknown functions hy(x), a(x)i in the problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions

This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...

متن کامل

Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions

In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...

متن کامل

Inverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions

In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining  a new Hilbert space and  using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...

متن کامل

On‎ ‎inverse problem for singular Sturm-Liouville operator with‎ ‎discontinuity conditions

‎In this study‎, ‎properties of spectral characteristic are investigated for‎ ‎singular Sturm-Liouville operators in the case where an eigen‎ ‎parameter not only appears in the differential equation but is‎ ‎also linearly contained in the jump conditions‎. ‎Also Weyl function‎ ‎for considering operator has been defined and the theorems which‎ ‎related to uniqueness of solution of inverse proble...

متن کامل

Inverse Sturm-Liouville problem with discontinuity conditions

This paper deals with the boundary value problem involving the differential equation begin{equation*}     ell y:=-y''+qy=lambda y,  end{equation*}  subject to the standard boundary conditions along with the following discontinuity  conditions at a point $ain (0,pi)$  begin{equation*}     y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0), end{equation*} where $q(x),  a_1 , a_2$ are  rea...

متن کامل

Solving Inverse Sturm-Liouville Problems with Transmission Conditions on Two Disjoint Intervals

‎In the present paper‎, ‎some spectral properties of boundary value problems of Sturm-Liouville type on two disjoint bounded intervals with transmission boundary conditions are investigated‎. ‎Uniqueness theorems for the solution of the inverse problem are proved‎, ‎then we study the reconstructing of the coefficients of the Sturm-Liouville problem by the spectrtal mappings method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2011